7^(2x)=1/49

Simple and best practice solution for 7^(2x)=1/49 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7^(2x)=1/49 equation:



7^(2x)=1/49
We move all terms to the left:
7^(2x)-(1/49)=0
We add all the numbers together, and all the variables
7^2x-(+1/49)=0
We get rid of parentheses
7^2x-1/49=0
We multiply all the terms by the denominator
7^2x*49-1=0
Wy multiply elements
343x^2-1=0
a = 343; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·343·(-1)
Δ = 1372
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1372}=\sqrt{196*7}=\sqrt{196}*\sqrt{7}=14\sqrt{7}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{7}}{2*343}=\frac{0-14\sqrt{7}}{686} =-\frac{14\sqrt{7}}{686} =-\frac{\sqrt{7}}{49} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{7}}{2*343}=\frac{0+14\sqrt{7}}{686} =\frac{14\sqrt{7}}{686} =\frac{\sqrt{7}}{49} $

See similar equations:

| 8(-3x-7)=-128 | | x=-17=42 | | 7(y-4)=-3(y-2) | | 2x2–20x+48=0 | | 7x+63(x-2)=7x+63(x-2) | | 1.39x=4.17 | | 8=x.x | | a/6+6=3 | | 8=x(x) | | x−13=14(x+13) | | 193-v=50 | | -9r=-8r+7 | | -34=2x+6(x-3) | | |z-8|+6=9 | | -2d=-4−2d | | 2x=x-1=0 | | 3(w-4)+5(2w+1)-(13w+9)=0 | | v−10=-3v+10 | | 3+4t=5t+9 | | 4/3=2/3t7/3 | | -8y+20=-4(y+1) | | 54b^2+90b-36=0 | | 96=3(k+11) | | y+2.6=8.71 | | 8x-20=12×+4 | | 97=9w+7 | | c-11/(1/7)=1 | | (3x+5)=(2x | | 45+12h=123 | | 5=15-2k | | 18*3+y=23 | | (3m+2)/2+6m=8.5 |

Equations solver categories